Date: _____

Modelling and Solving Two-Step Equations: a(x + b) = c

MathLinks 8, pages 394–399

Key Ideas Review

For #1 to #4, unscramble the letters to form a word that correctly completes the statement.

	•
1.	To solve an equation, OITSLAE the variable on one side of the
	When the operations performed on the variable, use
	PTIOOPES operations.
3.	Solve equations in the form $a(x + b) = c$ by Using the DDGIIINV first, or by
	BDEIIISRTTUV property.
4.	Check your AENRSW by substituting it back into the equation.
	Both should have the same value.

Practise and Apply

5.	Solve the equation modelled by
	each diagram. Check your solution

Model and then solve each equation. Check your solution.

a)
$$4(t-5) = 8$$

8. Beth would like to put a 2-m wide grass border around a square garden that has a perimeter of 44 m.

a) What equation models this situation?

b) 5(r+7) = -55

b) If she wants a fence around the outside of the grass border, what length of fencing will she have to buy?

7. Solve each equation. Check your answer.

a)
$$-3(x-8) = 12$$

b)
$$600 = 4(s + 4)$$

- 9. Aaron is driving to his friend's place 180 km away. If he can average a speed that is 5 km/h more than his current speed and then triple that, he will arrive in two hours.
 - a) Using s for his current speed, what equation models this situation?
 - b) Determine Aaron's speed.