Science 9

8.3: Resistance and Ohm's Law

<u>Resistance</u> is the property of any material that slows down the flow of electrons. At the same time, electrical energy is converted to other forms of energy.

Ex. The filament in a light bulb causes the electrons to slow down, and the energy is converted to light and heat.

The greater the voltage (potential difference) in a circuit, the faster the electrons flow \rightarrow the greater the current.

<u>Larger resistance</u> in an object means <u>less current</u> can flow in a circuit.

$$V = IR$$

$$I = current(A)$$

$$R = resistance(\Omega)$$

Ohm's Law can be written like this too:

$$R = V/I$$
 and $I = V/R$

 \underline{Ex} . What is the resistance of a flashlight bulb if there is a current of 0.75 A when connected to a 3.0 V battery?

$$R = \frac{3.0V}{0.75A}$$

 \underline{Ex} . The resistance of a car headlight is 15 Ω . If there is a current of 0.80 A through the headlight, what is the voltage?

 \underline{Ex} . A 60 V potential difference is measured across a load that has a resistance of 15 Ω . What is the current through this load?

Converting Prefixes:

* Sometimes prefixes are used for units:

milli (m) \rightarrow one-thousandth

kilo $(k) \rightarrow$ one thousand

 $mega(M) \rightarrow one million$

* Prefixes MUST be converted BEFORE you do the calculation

 $\underline{\mathsf{Ex}}.$ What is the voltage across a 12 $\mathbb{k}\Omega$ load that allows a current of 6.0 mA?